

PRECISION FARMING: applicazioni per la gestione dell'alimentazione nell'allevamento bovino

Prof. Igino Andrighetto

Dip. Medicina Animale, Produzioni e Salute (MAPS) Università degli Studi di Padova

Montichiari, 17 febbraio 2017

OPTIMO IZSVe: un caso di successo? Quello che non si misura, non migliora

IGINO ANDRIGHETTO, STEFANIA CHINELLO, LISA ZANARDO

OPTIMO IZSVe represents a national innovative experience, on evaluation of the performance in P.A.: the Istituto Zooprofilattico Sperimentale delle Venezie, since 2008, has pursued an orientation based on improvement objectives; from these premises starts up Optimo IZSVe, a system based on the Balanced Scorecard of Kaplan and Norton's model. Structured in six different perspectives, it integrates economic and budget indicators with non-economic indicators created ad hoc. It allows a complete monitoring of the activities, the economic flows, the human resources and programming, giving the possibility to activate actions for the continuous improvement and the prompt check of the results.

Keywords: performance indicator, performance evaluation, programming and control

Parole chiave: indicatore, valutazione delle performance, programmazione e controllo

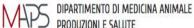
Note sugli autori

Igino Andrighetto, professore e Direttore Generale, Istituto Zooprofilattico Sperimentale delle Venezie Stefania Chinello, Istituto Zooprofilattico Sperim tale delle Venezie Lisa Zanardo, Ingegnere, Top Performan

1. Introduzione

Gli andamenti economici dei Paesi sviluppati registrano negli ultimi anni un crescente impulso alla razionalizzazione delle risorse impiegate.

Si possono sintetizzare due tipologie di approcci: quello dell'ente pubblico che, per far fronte a esigenze di efficiente gestione ed efficace pianificazione, sviluppa un proprio Sistema di controllo delle performance interne; quello del mondo aziendalistico, orientato alle grandi imprese, che basano sull'attenta pianificazione e sul puntuale controllo le loro linee strategiche, e alle piccole medie realtà industriali, forzate da una complessa congiuntura di mercato a un più strutturato monitoraggio dei propri progetti.


Trasparenza, valutazione, merito non possono dunque rimanere proclami, ma vanno tradotti negli strumenti operativi a disposizione dei dirigenti e dei loro collaboratori.

Al fine di avere un quadro esaustivo dell'evoluzione del concetto di «controllo delle organizzazioni», è necessario fare un rapido excursus sin dalle origini, per poi evidenziare le metodologie di sviluppo e realizzazione valide sia per l'azienda privata che per l'ente pubblico. Proprio in tal senso va considerato il Sistema OPTIMO IZSVe che, anticipando le recenti disposizioni legislative in materia per le strutture pubbliche, consente di tradurre gli obiettivi strategici in piani d'azione operativi, di monitorare gli andamenti economici e le attività progettuali, di assegnare correttamente le risorse umane, finanziarie, i carichi di lavoro e di responsabilità, verificandone tempestivamente i risultati.

SOMMARIO

- 1. Introduzione
- 2. Cenni storici
- 3. Cenni metodologici
- Settore pubblico: disposizioni legislative
- OPTIMO IZSVe: monitorare le performance permeando la complessità organizzativa
- 6. Conclusioni

ting - Consulenza d'Impresa

PRECISION FARMING AMBITI OPERATIVI DEL GRUPPO DI RICERCA

- Predizione e controllo dei processi di conservazione degli alimenti (insilati)
- Gestione della razione in stalla
- Prevenire l'insorgenza di patologie mediante il controllo del comportamento degli animali
- Controllo delle condizioni ambientali nelle strutture di allevamento
- Pianificazione della riproduzione in base ai dati aziendali

GESTIONE DELLA RAZIONE IN STALLA

Requisiti fondamentali per un'alimentazione basata sull'unifeed per garantire la contemporanea ingestione di tutte le componenti la dieta

- L'omogeneità della miscelata al momento della distribuzione
- 2. Evitare che gli animali scelgano quindi differenzino nel tempo l'ingestione dei diversi alimenti componenti la dieta

COSA SI INTENDE PER OMOGENEITA'?

La composizione chimica e la struttura fisica (lunghezza dei componenti) della razione dovrebbero essere comparabili in ogni tratto di unifeed distribuito

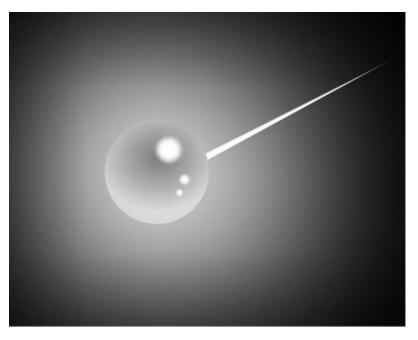
POSSIBILITA' DI MISURARE L'OMOGENEITA'

- Prelievo di campioni lungo la mangiatoia per sottoporli ad analisi chimica e setacciatura (realistico ma oneroso)
 - Indicatori (traccianti) immessi nel carro miscelatore (solo ricerca)

 Analisi direttamente allo scarico della miscelata mediante appositi strumenti portatili

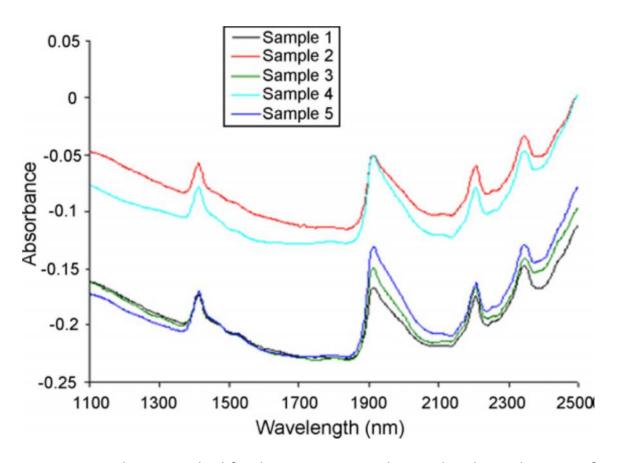
NUOVO SISTEMA DI MISURA

- ▶ La disponibilità di uno strumento NIRS portatile dotato di specifiche costruttive adatte per la lettura in diretta (Polispec della IPTPhotonics – Italia)
- La creazione di una curva specifica di calibrazione per gli unifeed in grado non solo si leggere le caratteristiche chimiche ma anche fisiche strutturali dell'unifeed



PARTICOLARITA' DEL POLISPEC PER LA MISURA DELLA LUNGHEZZA DELLE PARTICELLE

Scattering o diffusione della luce


Un esempio molto comune di diffusione della luce (scattering di Rayleigh) è dato dal colore blu del cielo: la luce (bianca) del sole incide sull'atmosfera terrestre, le cui molecole diffondono con più facilità le frequenze più alte (ovvero i colori più vicini al blu e al violetto); di conseguenza, mentre il grosso della luce ci arriva direttamente dal sole, la luce blu diffusa ci proviene da tutte le direzioni. E il sole che, quasi per definizione, dovrebbe essere perfettamente bianco, ci appare giallastro, perché gli è stata sottratta un po' di luce blu.

SCATTERING ED EFFETTO SULLA LUNGHEZZA DELLE PARTICELLE

In questo esempio* si possono vedere gli effetti, sullo spettro NIR, di diverse dimensioni particellari di campioni di aggregati di ossido di silicio (SiO₂) in dimensioni da 50 µm a 1 mm: maggiore è la dimensione particellare, maggiore è l'assorbimento del NIR

*An expeditious method for determining particle size distributionby near infrared spectroscopy: Comparison of PLS2 and ANN models. Marcelo Blanco, Anna Peguero. Talanta 77 (2008) 647-651

La definizione di una modalità operativa di lettura lungo il fronte mangiatoia, di un programma statistico e di un algoritmo in grado di categorizzare le diverse omogeneità

HA PERMESSO DI

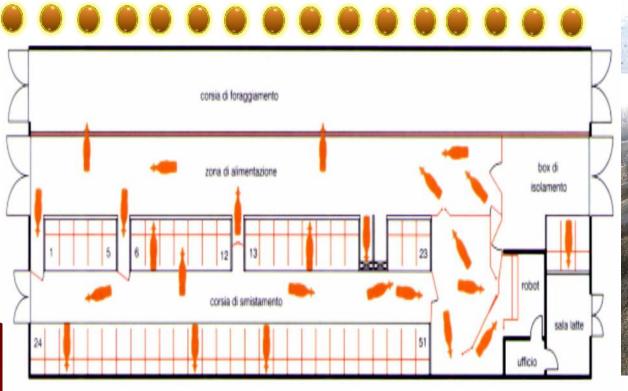
MISURARE DIRETTAMENTE IN CAMPO UN INDICE DI OMOGENEITA

Da controlli sperimentali sono emerse significative indicazioni per i valori

- delle percentuali di razioni ritrovate nei setacci 4 5 e sul fondo
- di lunghezza media geometrica (mm)
- proteina grezza (% s.s.)
- ▶ NDF (% s.s)
- amido (% s.s)

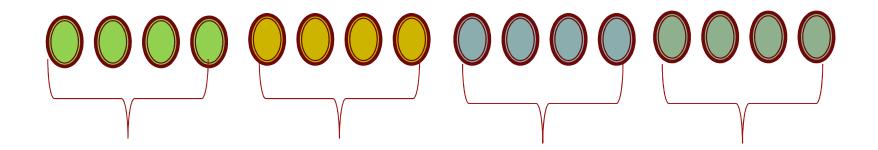
AFFIDABILITA' DEI PARAMETRI SELEZIONATI

Parametro	SEC	RSQ	Media	Dev.st	RPD (Ratio of Performance to Deviation)
Setaccio 4	4.29	0.76	32.1	9.54	2.43
Setaccio 5	2.31	0.79	17.1	5.40	2.50
FONDO	3.26	0.78	17.2	9.47	2.18
L.M.G.	1.66	0.75	8.61	6.35	2.47
Sostanza					
secca	0.99	0.96	52.0	8.43	6.61
Proteina					
Greggia	0.29	0.89	6.96	1.39	2.61
NDF	1.28	0.86	20.3	5.45	3.61
ADF	0.73	0.88	11.9	3.10	3.30
Amido	1.33	0.77	12.3	3.33	2.77


RPD > 2 buono RPD > 3 ottimo

CALCOLO INDICE DI OMOGENEITA'

Punti di lettura



Ampiezza del fronte di mangiatoia

Sequenza 1

Sequenza 2

Sequenza 3

Sequenza 4

- Con l'obiettivo di graduare il livello di omogeneità in relazione anche all'importanza del parametro considerato e delle possibili interazioni fra loro, è stato messo a punto un algoritmo attribuendo un peso diverso ai 7 parametri.
- Con questa procedura è stato possibile fissare un punteggio di merito complessivo che su una scala che va da 1 a 100 permette di suddividere l'omogeneità in 5 categorie.

80 ≤ Indice di Omogeneità < 100	Molto omogeneo
65≤ Indice di Omogeneità < 80	Omogeneo
50≤ Indice di Omogeneità <65	Sufficientemente omogeneo
35≤ Indice di Omogeneità <50	Disomogeneo
25≤ Indice di Omogeneità <35	Molto disomogeneo
0≤ Indice di Omogeneità <25	Estremamente disomogeneo

	I.O.	Giudizio
AZIENDA 1	46	Disomogeneo
AZIENDA 1 AZIENDA 2	79	
AZIENDA 2 AZIENDA 3		Omogeneo
	24	Estremamente disomogeneo
AZIENDA 5	55	Sufficientemente omogeneo
AZIENDA 5	73	Omogeneo
AZIENDA 6	48	Disomogeneo
AZIENDA 7	74	Omogeneo
AZIENDA 8	32	Molto disomogeneo
AZIENDA 9	39	Disomogeneo
AZIENDA 10	31	Molto disomogeneo
AZIENDA 11	16	Estremamente disomogeneo
AZIENDA 12	32	Molto disomogeneo
AZIENDA 13	39	Disomogeneo
AZIENDA 14	28	Molto disomogeneo
AZIENDA 15	49	Disomogeneo
AZIENDA 16	17	Estremamente disomogeneo
AZIENDA 17	53	Sufficientemente omogeneo
AZIENDA 18	72	Omogeneo
AZIENDA 19	54	Sufficientemente omogeneo
AZIENDA 20	68	Omogeneo
AZIENDA 21	13	Estremamente disomogeneo
AZIENDA 22	55	Sufficientemente omogeneo
AZIENDA 23	67	Omogeneo
AZIENDA 24	54	Sufficientemente omogeneo
AZIENDA 25	44	Disomogeneo
AZIENDA 26	61	Sufficientemente omogeneo
AZIENDA 27	47	Disomogeneo
AZIENDA 28	82	Molto omogeneo
AZIENDA 29	18	Estremamente disomogeneo
AZILL 24.30	50	Disomogeneo
AZIENDA 31	96	Molto omogeneo
AZIENDA 32	20	Estremamente disomogeneo
AZIENDA 33	63	Sufficientemente omogeneo
		Damoiente omogeneo

Percentuale di aziende per categoria di Indice di Omogeneità

Molto omogeneo	Omogeneo	Sufficientemente omogeneo	Disomogeneo	Molto disomogeneo	Estremamente disomogeneo
7%	18%	21%	24%	12%	18%
1					

Omogenee 39%

Disomogenee 61%

ATTUAZIONE PRATICA AZIENDALE:1° CONTROLLO

Dipartimento Medicina Animale Produzione e Salute (Università di Padova) Laboratorio CHIMICO – NIRS - XRF

laboratoriochimico.nirsxrf.maps@unipd.it http://www.maps.unipd.it/servizi/laboratori

	INDICE OMOGENEITA'
Cliente	Mario Rossi
Data analisi	Settembre 2016
Giudizio	estremamente disomogeneo (indice numerico = 13/100)

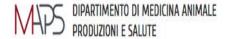
PARAMETRO	Media 1	Media 2	Media 3	Media 4	Media
S4	23.6	21.7	22.9	24.6	23,2
S5	25.4	24.6	25.1	27.4	25.6
FONDO	16. 5	17.2	17.0	22.1	18.1
LMG	7.45	8.05	7.72	5.98	7.30
PG	17.4	17.8	17.3	18.3	17.7
NDF	38.1	38.4	36.8	34.7	37.0
AMIDO	21.9	22.3	23.1	24.5	22.9

ATTUAZIONE PRATICA AZIENDALE: 2° CONTROLLO

Dipartimento Medicina Animale Produzione e Salute (Università di Padova)

Laboratorio CHIMICO – NIRS - XRF

		NDICE OF	MOGENE	ITA'		
		NDICE O	WOGENE	IIA		
Cliente	Mario Rossi					
Data analisi	Ottobre 2016					
Giudizio	disomogeneo (indice numerico = 48/100)					
PARAMETRO	Media 1	Media 2	Media 3	Media 4	Media	
S4	39.7	36.2	35.9	35.9	36.9	
S5	25.3	24.9	24.9	24.7	25.0	
FONDO	26.9	26.1	26.4	26.2	26.4	
LMG	3.03	3.75	4.42	4.09	3.90	
PG	14.9	14.5	14.6	14.5	14.6	
NDF	31.1	32.6	32.5	32.8	32.3	
AMIDO	30.2	29.6	29.8	29.1	29.7	


Dipartimento Medicina Animale Produzione e Salute (Università di Padova)

Cliente: MARIO ROSSI DATA: 18 gennaio 2017

INDICE OMOGENEITA'

	Settore 1	Settore 2	Settore 3	Settore 4
Setaccio 4	28,3	27,5	27,9	27,6
Setaccio 5	25,9	25,4	26,0	26,0
Fondo	21,2	20,3	20,4	20,0
LMG	4,1	4,1	4,2	4,2
PG	15,8	15,4	15,4	15,3
NDF	34,3	34,2	34,3	35,2
AMIDO	25,8	25,6	25,3	24.9
Giudizio	MOLTO	OMOGENE	O (82,1)	

PROBLEMATICHE PIU' FREQUENTI DI OMOGENEITA'

DISFORMITÀ NELLA LMG:

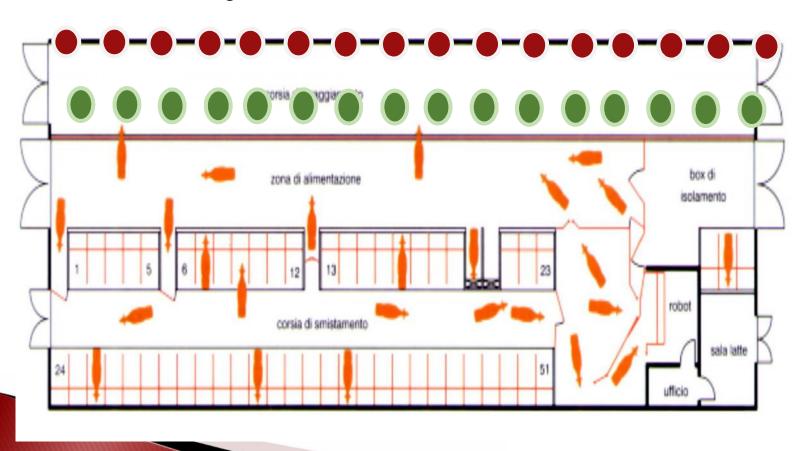
in molti casi si riscontrano LMG più corte nella prima metà dell'unifeed distribuito rispetto alla seconda metà

DISFORMITA' NELLA PERCENTAULE DI FONDO PRESENTE:

per mancata adesione delle particelle più fini a quelle più lunghe

INDICE DI SELEZIONE

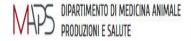
Il metodo messo a punto consente di elaborare i dati ottenuti da analisi chimico fisiche della razione distribuita. Il metodo è multiparametrico, i parametri non sono scelti a priori sono stati desunti dalle verifiche scientifiche. I campionamenti e tutta la procedura, devono essere ripetute a intervalli successivi dopo la distribuzione della miscelata (ad esempio dopo 1 ora, 2 ore, 4 ore, 8 ore).


Figura1: ciascun pallino colorato rappresenta un punto di campionamento per il quale saranno svolte le determinazioni analitiche dei parametri chimico/fisico di interesse, al fine di ottenere una stringa di risultati. Le serie di dati raggruppati in quattro o più ripetizioni definiscono una sequenza (pallini con lo stesso colore). Le sequenze sono rappresentate con colori diversi. Sono raccomandate almeno 4 sequenze di dati.

FV è un punto sulla mangiatoia, adatto al campionamento del prodotto, scelto in posizione tale per cui l'alimento già stato raggiunto dall'animale.

FC: è scelto in prossimità del punto FV ma tale per cui non sia stato raggiunto dall'animale, esso è posizionato a circa 40-50cm da FV, su una linea ortogonale rispetto alla linea di mangiatoia.

CALCOLO DELL'INDICE DI SELEZIONE

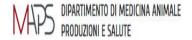

In base alla significatività del test di confronto fra coppie (FV vs FC) e all'applicazione di un algoritmo in grado di valutare diversamente i parametri chimicofisici prescelti si è definito:

VALORE NUMERICO DI SELEZIONE (IS)	DEFINIZIONE	SIMBOLO
IS < 0.4	Selezione accettabile	
0.4 IS 0.7	Selezione modesta	
0.7 IS 1.0	Selezione elevata	

	Indice di selezione	Giudizio
AZIENDA 1	0.17	Selezione accettabile
AZIENDA 2	0.06	Selezione accettabile
AZIENDA 3	0.50	Selezione modesta
AZIENDA 4	0.87	Selezione elevata
AZIENDA 5	0.63	Selezione modesta
AZIENDA 6	0.68	Selezione modesta
AZIENDA 7	0.88	Selezione elevata
AZIENDA 8	0.69	Selezione modesta
AZIENDA 9	0.39	Selezione accettabile
AZIENDA 10	0.96	Selezione elevata
AZIENDA 11	0.28	Selezione accettabile
AZIENDA 12	0.31	Selezione accettabile
AZIENDA 13	0.29	Selezione accettabile
AZIENDA 14	0.91	Selezione elevata
AZIENDA 15	0.39	Selezione accettabile
AZIENDA 16	0.33	Selezione accettabile
AZIENDA 17	0.43	Selezione modesta
AZIENDA 18	0.31	Selezione accettabile
AZIENDA 19	0.53	Selezione modesta
AZIENDA 20	0.07	Selezione accettabile
AZIENDA 21	0.11	Selezione accettabile
AZIENDA 22	0.10	Selezione accettabile
AZIENDA 23	0.50	Selezione modesta
AZIENDA 24	0.30	Selezione accettabile
AZIENDA 25	0.20	Selezione accettabile
AZIENDA 26	0.10	Selezione accettabile
AZIENDA 27	0.40	Selezione accettabile
AZIENDA 28	0.90	Selezione elevata
AZILNDA 29	0.70	Selezione modesta
AZIENDA 30	AZIENDA 30 0.20 Selezion	
AZIENDA 31	0.80	Selezione elevata

Percentuale di aziende per categoria di Indice di Selezione

Selezione accettabile	Selezione modesta	Selezione elevata
55%	26%	19%


Come trasformare questi grafici in un messaggio utile all'agricoltore?

	INDICE CAPACITA' SELETTIVA							
Cliente								
Data analisi								
Giudizio	SELEZIONE MODESTA (in	ndice nume	erico $IS = 0,5$)					
PARAMETRO	Media FV	Media FC	Indice (ISP)	Giudizio				
a	23,99	20,83	1,0	selezione elevata				
b	25,93	26,43	0,1	Selezione accettabile				
С	14,49	18,59	1,0	selezione elevata				
d	7,57	7,77	0,0	Selezione accettabile				
e	16,29	17,59	1,0	selezione elevata				
f	39,49	38,17	0,2	Selezione accettabile				
g	18,66	21,20	1,0	selezione elevata				

0.0≤IS<0.4 = selezione accettabile

 $0.4 \le IS < 0.7 = selezione modesta$

0.7≤IS<1 = selezione elevata

PROBLEMATICHE PIU' FREQUENTI NELLA SELEZIONE

DIFFERENZIALE INGESTIONE DELLE PARTICELLE:

più fini prima di quelle più lunghe (LMG più corta nel FV rispetto a quello nel FC)

DIFFERENZIALE INGESTIONE DELL'AMIDO:

valori inferiori nel FV rispetto al FC, ciò a causa della prioritaria ingestione delle cariossidi presenti nel silomais

CONCLUSIONI

- ▶ La disponibilità di tecnologie innovative come un NIR portatile ad alta performance (Polispec) e di curve appositamente predisposte consentono di fornire informazioni in tempo reale all'allevatore sulle più opportune modalità di gestione della razione in stalla per garantire un equilibrata attività digestiva metabolica degli animali.
- L'utilizzo continuo di questa tecnologia risulta altresì essenziale per un corretta costruzione dei carri miscelatori basandosi non più su dati empirici o saltuari di complessa rilevazione oggettiva

GRAZIE PER L'ATTENZIONE