

PROGRAMMA

Dati Analisi Metodi Organizzazione Confronti Laboratori Esperti

RING TEST CELLULE SOMATICHE LATTE VACCINO CONGELATO GENNAIO 2023

(RTCCSC180123)

ASSOCIAZIONE ITALIANA ALLEVATORI LABORATORIO STANDARD LATTE VIA DELL'INDUSTRIA SNC - 00054 MACCARESE ROMA Tel. +39 06 6678830 Fax. +39 06 6678811 email Isl@aia.it

INDICE

Indice	pag. 2
Norme e documenti di riferimento	pag. 3
Guida all'interpretazione del ring test	pag. 4
Elenco partecipanti	pag. 6
Risultati dei laboratori	pag. 7
Diagrammadi densità di Kernel	pag. 8
Grafici	pag. 9
Cellule differenziali	pag.13

Per l'organizzazione e l'elaborazione dei dati del RING TEST, il Laboratorio Standard Latte segue in modo conforme i requisiti previsti nei seguenti documenti o norme:

- ISO 5725 2:2019 Accuracy (trueness and precision) of measurement methods and results – part 2;
- ISO 13528:2022 Statistical methods for use in Proficiency Testing by laboratory comparison
- Pure Appl. Chem. Vol. 78, n°1 pp.145-196, 2006 (The International harmonized protocol for the proficiency testing of analytical chemistry laboratories);
- ISO/IEC 17043:2010 Conformity assessment General Requirements for proficiency testing
- ISO Guide 17034:2016 General requirements for the competence of reference material producer
- ISO/IEC 17025:2018: General requirements for the competence of testing and calibration laboratories
- J. Dairy Sci. 99:6808-6827: A proficiency test system to improve performance of milk analysis methods and produce reference values for component calibration samples for infrared milk analysis.
- ISO GUIDE 35:2017 Reference materials Guidance for characterization and assessment of homogeneity and stability

Il Responsabile del Laboratorio (Dott.ssa Annunziata Fontana)

GUIDA ALL'INTERPRETAZIONE DEI RISULTATI

Il presente Ring Test ha l'obiettivo di valutare le performance dei laboratori partecipanti in conformità alla norma UNI CEI EN ISO/IEC 17043.

Il Laboratorio Standard Latte è accreditato come provider di prove valutative interlaboratorio (Proficiency Testing Provider, PTP) da Accredia, con codice PTP N°0023P.

Tutte le informazioni in possesso del Laboratorio Standard Latte sui partecipanti sono riservate e non saranno divulgate a nessuno se non esplicitamente concordato con il partecipante.

Questo Ring Test è stato effettuato su 7 lotti di latte vaccino congelato.

A ciascun campione è stato aggiunto il conservante Bronopol 0.4%.

L'omogeneità e la stabilità sono state verificate, con esito positivo, in conformità alla norma ISO 13528 - Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparisons, per ciascun lotto.

L'unimodalità della distribuzione dei risultati è stata verificata attraverso il diagramma di densità di Kernel. I dati hanno una distribuzione unimodale quando l'area del picco è uguale o maggiore al 95%. Se tale requisito non viene soddisfatto, l'incertezza di misura non viene calcolata e sono forniti i valori di media, scarto tipo e zscore a solo titolo informativo.

I laboratori sono identificati da un numero che è stato precedentemente comunicato per e-mail.

La valutazione della performance del laboratorio viene calcolata sulla media delle repliche.

I laboratori outliers sono stati valutati attraverso il test di Cochran ed il test di Grubbs.

Prima di procedere al calcolo degli outliers, quando necessario, si eliminano i dati del laboratorio che presentano una differenza dalla media di tutti i risultati pari a 3 volte lo scarto tipo per quel campione (prescrutinizzazione).

Tutti i risultati outliers sono evidenziati in neretto.

VALORE ASSEGNATO

Il valore assegnato è rappresentato dalla media dei risultati esclusi gli outliers.

Lo scarto tipo del Ring Test corrisponde alla deviazione standard dei risultati dei laboratori esclusi gli outliers.

Nel caso in cui p<12 viene eseguita una statistica descrittiva e non può essere fornita la valutazione della performance del laboratorio partecipante. Si calcola quindi solo:

- media come valore assegnato
- scarto tipo come deviazione standard dei risultati

VALUTAZIONE DEI LABORATORI: ZSCORE E DISTANZA EUCLIDIANA D

Lo zeta score (zs) di ciascun campione viene calcolato:

$$zs = (x_i - x_{RTi})/s_{RTi}$$

x_i = media del campione i_{esimo} x_{RTi} =valore assegnato del campione i_{esimo} S_{RTi} = scarto tipo del campione i_{esimo}

Lo zs deve essere utilizzato dal laboratorio partecipante per valutare la propria performance nel Ring Test effettuato:

 $|zs| \le 2$ Soddisfacente 2 < |zs| < 3 Dubbio $|zs| \ge 3$ Insoddisfacente

Nel report sono evidenziati in arancione i valori di zs dubbi, in rosso quelli insoddisfacenti. Il Laboratorio Standard latte fornisce lo zs fisso, qualora disponibile, calcolato con lo scarto tipo fisso risultato delle medie delle varianze degli scarti tipo dei Ring test precedenti fino al 2018. Lo ZS fisso permette di monitorare l'andamento del laboratorio nel tempo ed individuare le linee di tendenza (carta di controllo). Non ha scopo valutativo per il presente RT.

La distanza euclidiana D rappresenta la dispersione dei valori intorno al valore assegnato:

$$D = \sqrt{(\text{mdiff}^2 + \text{stdiff}^2)}$$

m diff = la media aritmetica delle singole differenze (m diff); st diff= lo scarto tipo delle differenze (st diff);

Il valore di D ottenuto può essere utilizzato per valutare come il proprio laboratorio si è classificato rispetto all'andamento generale del ring test.

Nel caso in cui il numero dei campioni sia inferiore a 3 non è calcolata la D.

INCERTEZZA DI MISURA

L'incertezza di misura u(x) per campione viene calcolata secondo la formula:

$$u(x) = s_{RT}/\sqrt{p}$$

s_{RT}= scarto tipo del Ring Test p = numero di osservazioni valide

L'incertezza di misura viene pubblicata sul report finale solo se supera il criterio di accettabilità $u(x)<0,3*s_{RT}$.

Nel caso in cui il criterio di accettabilità non sia rispettato il valore assegnato non è affidabile e non può essere fornita una valutazione dei laboratori per il parametro interessato. In tal caso viene fornito il valore dello z score solo a titolo informativo.

Nel caso in cui la distribuzione dei risultati non sia unimodale oppure p<12, l'incertezza di misura non può essere valutata.

LATTE VACCINO CONGELATO

AIA BENEVENTO
LABORATORIO LATTE ASSESSORATO AGRICOLTURA (AO)
APA BOLZANO
ARA F.V.G
ARA BASILICATA
ARA EMILIA ROMAGNA-RE
ARA LOMBARDIA
ARA PIEMONTE
ARA PUGLIA
ASSOLAC
GRANAROLO BOLOGNA
IZS ROMA
IZS TORINO

HANNO PARTECIPATO 13 LABORATORI CON 22 STRUMENTI

VS. CODICE.....

Invio dei campioni	18 GENNAIO 2023
Data indicata per l'invio dei risultati	27 GENNAIO 2023
% dei risultati ricevuti nei limiti indicati	100%
Ultimi risultati ricevuti	27 GENNAIO 2023
Data emissione report	03 FEBBRAIO 2023
Giorni impiegati tra l'invio dei campioni e l'emissione del report	16 giorni
Coordinatore	Angelica Di Giovenale
Responsabile emissione	Annunziata Fontana

RING TEST GENNAIO 2023 CONTENUTO IN CELLULE SOMATICHE (x1000/ml) LATTE VACCINO CONGELATO

										RIS	ULT	ATI								
											<u> </u>									
[1	ZS1	Outlier	2	ZS2	Outlier	3	ZS3	Outlier	4	ZS4	Outlier	5	ZS5	Outlier	6	ZS6 Outlier	7	ZS7	Outlier
1	282	0,60	Oddici	451	0,40	Outilci	153	0,50	Oddici	1240	1,40	Outilci	857	0,80	Oddici	696	1,20	911	0,60	Outilei
2	216	-2,99		412	-1,50		142	-0,60		1000	-4.44	prescr	583	-6.14	prescr	566	-4.37 prescr	871	-0,60	
3	280	0,50		466	1,10		159	1,10		1204	0,50	•	846	0,50		695	1,20	949	1,80	
4	279	0,40		441	-0,10		154	0,60		1196	0,40		826	0,00		671	0,10	863	-0,90	
5	278	0,40		450	0,30		148	0,00		1185	0,10		819	-0,20		664	-0,20	924	1,00	
6	276	0,30		456	0,60		146	-0,20		1156	-0,60		840	0,30		668	0,00	895	0,10	
7	272	0,00		431	-0,60		135	-1,30		1152	-0,70		819	-0,20		670	0,10	854	-1,10	
8	274	0,10		465	1,00		153	0,50		1214	0,80		855	0,70		694	1,10	916	0,80	
9	280	0,50		450	0,30		159	1,10		1190	0,20		807	-0,50		692	1,10	935	1,40	
10	270	-0,10		455	0,50		144	-0,40		1191	0,20		829	0,10		662	-0,20	890	0,00	
11	281	0,60		460	0,80		150	0,20		1233	1,30		845	0,50		673	0,20	904	0,40	
12	242	-1,60		435	-0,40		138	-1,00		1111	-1,70		736	-2,30		627	-1,70	828	-2,00	
13	293	1,20		452	0,40		156	0,80		1172	-0,20		850	0,60		654	-0,60	893	0,10	
14	258	-0,70		417	-1,30		144	-0,40		1119	-1,50		780	-1,20		631	-1,60	879	-0,40	
15	244	-1,50		424	-0,90		128	-2,10		1171	-0,30		764	-1,60		649	-0,80	879	-0,40	
16	268	-0,20		429	-0,70		139	-0,90		1128	-1,30		809	-0,40		646	-0,90	884	-0,20	
17	304	1,80		502	2,80		175	2,70		1259	1,90		934	2,70		720	2,30	1054	5,10	prescr
18	262	-0,50		409	-1,60		145	-0,30		1152	-0,70		817	-0,20		652	-0,70	842	-1,50	
19	277	0,30		452	0,40		149	0,10		1217	0,90		860 807	0,80		678	0,40	940	1,50	
21 22	275 274	0,20 0,20		429 432	-0,70 -0,50		147 281	-0,10 13.39	prescr	1138 1132	-1,10	Cochran	807 819	-0,50 -0,20		651 649	-0,70 -0,80	893 899	0,10 0,20	
22	280	0,20		434	-0,50		146	-0,20	presci	1200	0,50	Cocnian	831	0,10		675	0,30	857	-1,00	
23	200	0,50		434	-0,40		140	-0,20		1200	0,50		031	0,10		0/5	0,30	037	-1,00	
campioni	1			2			3			4			5			6		7		
valore assegnato	271			443			148			1181			826			667		891		
S _{RT}	18,44			21,14			9,94			40,93			39,65			23,15		31,97		
p	22			22			21			20			21			21		21		
u	3,93			4,51			2,17			9,15			8,65			5,05		6,98		
sR	19,15			21,85			10,63			42,51			40,63			24,31		34,06		
sr	7,28			7,84			5,32			16,26			12,52			10,53		16,65		
R	53,62			61,19			29,75			119,03			113,76			68,08		95,38		
r	20,39			21,95			14,89			45,53			35,07			29,48		46,61		
sR relativa %	7%			5%			7%			4%			5%			4%		4%		
sr relativa %	3% 95%			2% 95%			4% 90%			1% 100%			2% 90%			2% 95%		2% 100%		
Percentuale di score soddisfacenti Percentuale di score dubbi	95% 5%			95% 5%			10%			0%			10%			95% 5%		0%		
Percentuale di score dubbi Percentuale di score insoddisfacenti	5% 0%			5% 0%			0%			0%			0%			5% 0%		0%		
n°laboratori che hanno riportato il risultato	22			22			21			21			21			21		21		

Legenda

sr:

sRT scarto tipo del Ring Test

p: Numero delle osservazioni valide considerate nell'elaborazione statistica

incertezza di misura scarto tipo di Riproducibilità scarto tipo di ripetibilità

R riproducibilità r: ripetibilità

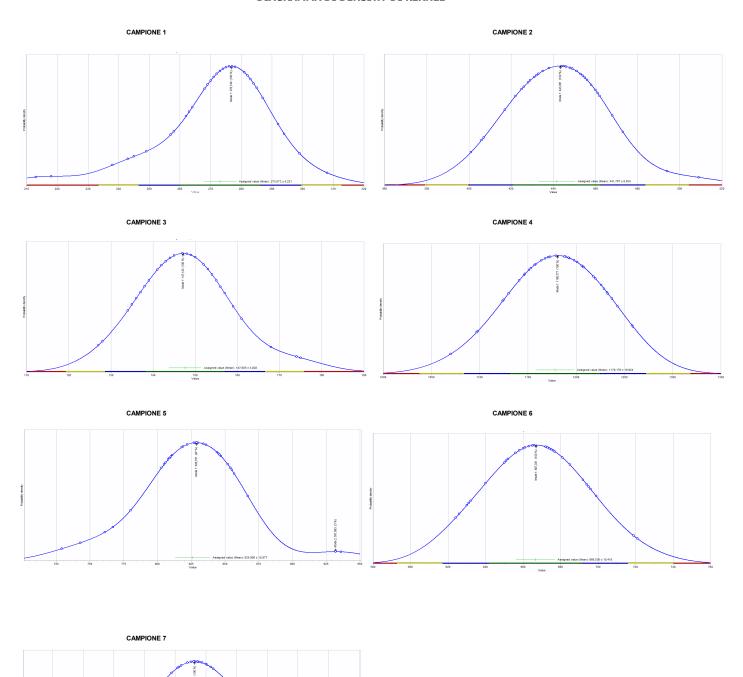
sR relativa %: scarto tipo di riproducibilità relativo sr relativa %: scarto tipo di ripetibilità relativo

Z SCORE 2<|zs|< 3

 VALORI DELLA MEDIA PROGRESSIVA DELLE FIGURE DI PRECISIONE R ED r DAL 2011 AL 2023

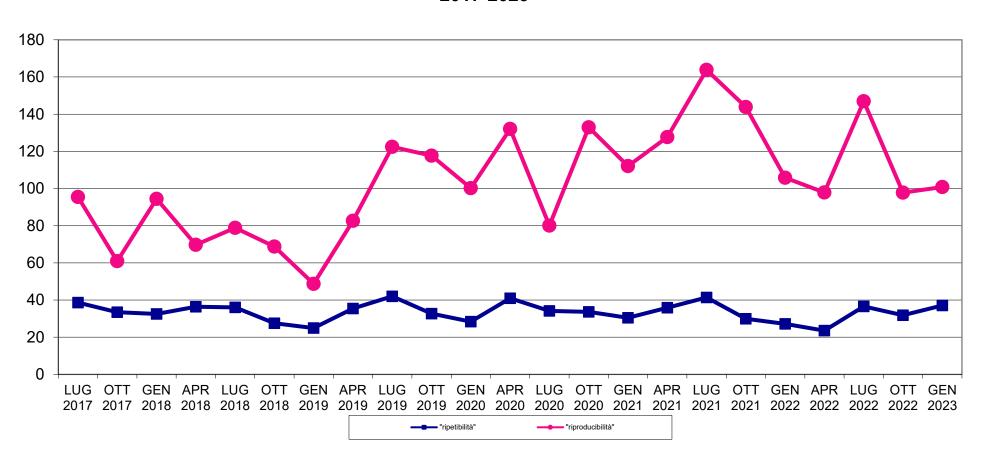
 r
 R
 Sr
 SR

 37,12
 100,82
 13,26
 36,01

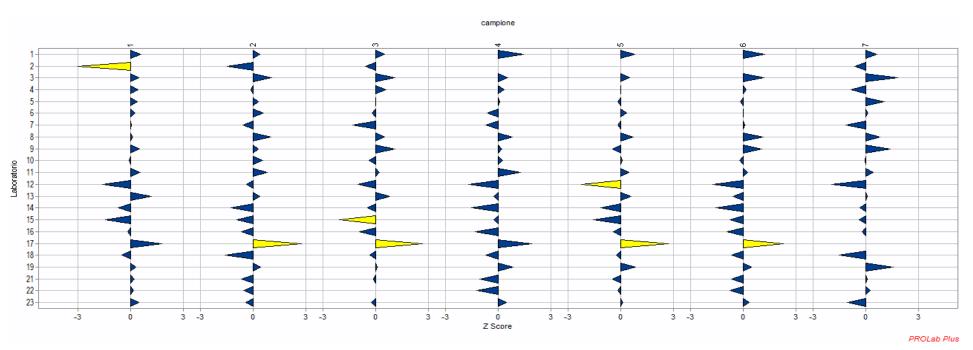


RING TEST GENNAIO 2023 CONTENUTO IN CELLULE SOMATICHE (x1000/ml) LATTE VACCINO CONGELATO

DIAGRAMMA DI DENSITA' DI KERNEL



ANDAMENTO DELLA RIPETIBILITA' E DELLA RIPRODUCIBILITA' RING TEST CELLULE SOMATICHE LATTE CONGELATO 2017-2023



RING TEST GENNAIO 2023 CONTENUTO IN CELLULE SOMATICHE (x1000/ml) LATTE VACCINO CONGELATO

PTP Nº 0023 P

ZSCORE

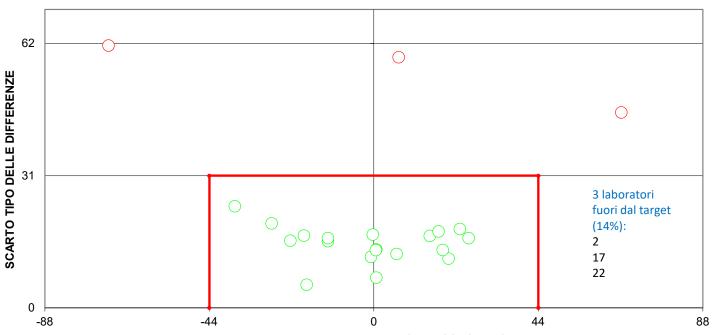
RING TEST GENNAIO 2023 CONTENUTO IN CELLULE SOMATICHE (x1000/ml) LATTE VACCINO CONGELATO

		DIFFER	ENZE D	AL VAL	ORE AS	SEGNA [®]	то
COD	1	2	3	4	5	6	7
1	11	8,068	5,071	58,9	28,81	28,81	20,452
2	-55	-31,43	-5,929	-181,6	-101,2	-101,2	-20,05
3	8,68	22,568	11,071	22,4	27,31	27,31	58,452
4	8,18	-2,432	6,071	14,4	3,31	3,31	-28,05
5	7,18	6,568	0,071	3,4	-3,69	-3,69	32,952
6	4,68	12,568	-1,929	-25,6	0,31	0,31	4,452
7	0,68	-12,43	-12,93	-29,1	2,31	2,31	-36,55
8	2,68	22,068	5,071	32,9	26,31	26,31	24,952
9	9,18	6,568	11,071	8,9	24,81	24,81	43,952
10	-1,3	11,568	-3,929	9,9	-5,19	-5,19	-1,048
11	10,2	17,068	2,071	51,4	5,31	5,31	13,452
12	-29	-7,932	-9,929	-70,1	-40,19	-40,19	-62,55
13		8,568	8,071	-9,6	-13,69	-13,69	1,952
14		-26,43	-4,429	-62,1	-36,69	-36,69	-11,55
15		-19,43	-20,43	-10,6	-18,19	-18,19	-12,05
16	-3,3	-14,43	-9,429	-53,6	-21,69	-21,69	-6,548
17	32,7	58,568	26,571	77,4	52,81	52,81	162,95
18		-33,93	-3,429	-29,6	-15,69	-15,69	-48,55
19	5,68	9,068	1,071	35,4	10,31	10,31	49,452
21	3,68	-14,43	-1,429	-43,6	-16,19	-16,19	2,452
22		-11,43	133,07	-49,6	-18,19	-18,19	7,952
23	8,68	-8,932	-2,429	18,9	7,81	7,81	-33,55

ORD	COD	D	%
1	10	7,1	5%
2	6	12,0	9%
3	13	13,5	14%
4	4	13,7	18%
5	5	14,0	23%
6	23	17,2	27%
7	15	18,8	32%
8	7	19,9	36%
9	21	20,4	41%
10	11	22,6	45%
11	9	22,9	50%
12	8	23,1	55%
13	19	24,9	59%
14	16	25,2	64%
15	18	27,3	68%
16	1	29,5	73%
17	3	30,2	77%
18	14	33,7	82%
19	12	44,2	86%
20	22	59,1	91%
21	17	80,6	95%
22	2	93,9	100%

ORD = ordinamento;

dove


D = distanza euclidiana dall'origine degli assi.

m diff = m lab - valore di riferimento; st diff= scarto tipo delle differenze

RING TEST CELLULE SOMATICHE GENNAIO 2023 CONTENUTO IN CELLULE SOMATICHE X 1000/ml LATTE VACCINO CONGELATO

DIFFERENZA DAL VALORE ASSEGNATO

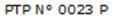
(LIMITI DEL TARGET:R/2=+/-44;SR=31)
LIMITI STABILITI DALLA MEDIA PROGRESSIVA AGGIORNATA A DICEMBRE 2022

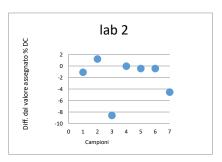
RING TEST GENNAIO 2023 % CELLULE DIFFERENZIALI LATTE VACCINO CONGELATO

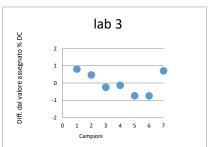
	RISULTATI GENERALI											
	1	2	3	4	5	6	7					
VAL ASS.(MEDIA)	73,6	85,6	81,5	84,0	83,7	86,6	80,6					
ST	2,7	1,0	3,5	1,3	1,3	2,0	2,0					
р	11	11	11	11	11	11	11					

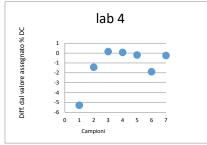
		RISULTATI DEI LABORATORI PARTECIPANTI													
COD	1	1 2		3	3	4	ŀ	5	5	•	5	7	7		
2	71,7	73,3	87,0	86,6	73,1	72,8	83,0	84,9	81,6	81,7	84,5	87,9	77,3	74,8	
3	72,9	75,9	86,2	85,9	79,6	83,0	83,9	83,8	82,1	81,3	85,9	85,9	81,0	81,6	
4	68,8	67,8	84,7	83,6	82,4	81,0	83,8	84,3	82,7	83,3	85,1	84,4	79,9	80,8	
5	74,9	74,0	84,6	85,4	84,6	83,8	85,7	86,7	85,8	86,3	89,4	89,3	81,5	82,6	
7	73,0	72,5	84,5	85,3	86,4	82,4	85,5	84,2	84,4	85,3	89,2	88,4	82,1	83,0	
8	71,4	74,1	85,2	84,8	85,7	82,5	84,6	84,4	84,1	83,5	87,4	88,4	81,6	82,5	
10	74,7	76,6	86,8	85,7	83,5	86,0	86,0	84,9	85,6	85,9	89,6	88,2	83,3	82,8	
11	74,4	75,2	84,9	85,0	79,0	80,3	82,3	81,8	82,5	81,6	85,4	86,1	80,5	80,1	
12	73,0	73,4	86,7	88,3	84,6	83,9	84,6	84,1	83,6	83,1	87,5	87,8	81,2	80,1	
14	80,3	78,2	85,4	86,7	79,7	81,0	84,4	80,9	84,2	83,0	84,2	82,9	78,9	79,4	
19	69,9	73,0	86,6	82,9	79,0	79,7	82,0	81,8	82,8	81,9	84,6	84,0	79,3	78,8	

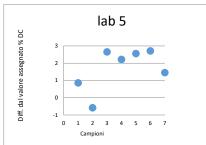
	MEDIA DEI CAMPIONI												
COD	1	2	3	4	5	6	7						
2	72,5	86,8	73,0	84,0	83,3	86,2	76,1						
3	74,4	86,1	81,3	83,9	83,0	85,9	81,3						
4	68,3	84,2	81,7	84,1	83,5	84,8	80,4						
5	74,5	85,0	84,2	86,2	86,3	89,4	82,1						
7	72,8	84,9	84,4	84,9	84,3	88,8	82,6						
8	72,8	85,0	84,1	84,5	84,3	87,9	82,1						
10	75,7	86,3	84,8	85,5	85,3	88,9	83,1						
11	74,8	85,0	79,7	82,1	82,2	85,8	80,3						
12	73,2	87,5	84,3	84,4	83,9	87,7	80,7						
14	79,3	86,1	80,4	82,7	82,6	83,6	79,2						
19	71,5	84,8	79,4	81,9	82,3	84,3	79,1						


-- DATO MANCANTE


		DIFFERENZE DAL VALORE ASSEGNATO													
COD	1	2	3	4	5	6	7								
2	-1,09	1,22	-8,60	-0,03	-0,44	-0,44	-4,55								
3	0,81	0,47	-0,25	-0,13	-0,74	-0,74	0,70								
4	-5,29	-1,43	0,15	0,07	-0,19	-1,89	-0,25								
5	0,86	-0,58	2,65	2,22	2,56	2,71	1,45								
7	-0,84	-0,68	2,85	0,87	0,61	2,16	1,95								
8	-0,84	-0,58	2,55	0,52	0,56	1,26	1,45								
10	2,06	0,67	3,20	1,47	1,56	2,26	2,45								
11	1,21	-0,63	-1,90	-1,93	-1,54	-0,89	-0,30								
12	-0,39	1,92	2,70	0,37	0,16	1,01	0,05								
14	5,66	0,47	-1,20	-1,33	-1,14	-3,09	-1,45								
19	-2,14	-0,83	-2,20	-2,08	-1,39	-2,34	-1,55								






RING TEST GENNAIO 2023 % CELLULE DIFFERENZIALI LATTE VACCINO CONGELATO

